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v ABSTRACT

A general model is introduced which incorporates minimal repair, planned

and unplanned replacements, and costs which depend on time. Finite and in-

finite horizon results are obtained. Various special cases are considered.

Furthermore a shock model with general cost structure is considered.
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1. Introduction

Most of the literature concerning the stochastic behavior of repairable

systems assumes that when a unit is repaired, it becomes as good as new.

Although this assumption provides a technical convenience, in many situations

it is not realistic. A more realistic situation is that when the unit is

repaired, it is restored to its functioning condition just prior to failure.

This is called minimal repair. Several authors have discussed this situation.

See for example Ascher and Feingold (1979) and the references contained in that

paper.

Barlow and Hunter (1960) considered minimal repair in the case of periodic

replacement or overhaul at times T,2T,3T,... (for some T> 0) and minimal

repair if the system failed otherwise. They considered costs ' of replacement

and cI for each minimal repair. This model has been generalized by Beichelt

(1976), Boland and Proschan (1982) and Boland (1982).

In this paper a general model which incorporates minimal repair, planned

and unplanned replacements, and costs which depend on time. The -model is

described explicitly at the beginning of the next section. The expected long

run average cost is derived for this model and optimization results are obtained

in both the finite and infinite horizon case. A shock model similar to the one

of Boland and Proschan (1983) is proposed, but with general cost structure.

As special cases, various results from Barlow and Proschan (1965) are obtained

as well as many of the results of Beichelt (1976), Boland and Proschan (1982)

and Boland (1982).

In Section 2, the model is described, then the total expected long run

cost per unit time is found. Theorem 2.10 gives a general optimization result

for the infinite horizon case. Theorem 2.13, 2.14 and Corollary 2.15 give

finite horizon result. Also various special cases are detailed.

Section 3 contains the shock model with general cost structure.



2

2. General model

We consider a preventative maintenance model in which minimal repair or

replacement takes place according to the following scheme. An operating unit

is completely replaced whenever it reaches age T (T> 0) at a cost c0 planned

replacement). If it fails at age y <T, it is either replaced by a new unit

with probability p(y) at a cost c (unplanned replacement), or it undergoes

minimal repair with probability q(y) .1- p(y). The cost of the i-th minimal

repair is ci(y). After a complete replacement (i.e., an unplanned or planned

replacement by a new unit), the procedure is repeated. We assume all failures

are instantly detected and repaired. We always assume c0 >0.

The survival distribution F(y) of a unit is assumed to be a continuous

function of y. If no planned replacements are considered (i.e., T=-), the

survival distribution of the time between successive unplanned replacements

is given by

(2.1) F p(y) = exp(-; p(x)F (x)dF(x)}.

See Block, Borges, and Savits (BBS) (1982) for a derivation of this result.

Let Y1,Yi,... be iid random variables with survival distribution F and

set Y iMY A T (where aAb =min(a,b)) for i 1,2,.... Let I denote the operational

cost over the renewal inte.rval Yi" Thus f(Yi,Ri)} constitutes a renewal reward process.

If K(t) denotes the expected cost of operating the system over the time in-

terval [O,t], then it is well known that

(2.2) 
limK 

t  - E[R 1]

t *"
t-e , W E[l ]

(See, e.g., Ross (1970), page 52). We shall denote the xight-hand side of
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(2.2) by B(T). T

Since E[Y I1 fF (t)dt, we need only evaluate E[RI]. Using the techniques

of BSS (1982), one obtains that

T Y

(2.3) E[RI ]=c Fp(T) +c 0 Fp(T) + q(y)h(y) exp { q(z)P (z)dF(z)1dF(y),

where
Y Y

(2.4) h(y) = oJ+l (y) exp(- q(u)F - (u)dF(u)} . (J q(v)F-l (v)dF(v))J.

The tedious but routine details are contained in the Appendix. If M(y) denotes a

nonhomogeneous Poisson process with mean fJq(u)F - (u)dF(u), then we can also
0

write (2.4) as

(2.5) h(y) = E[CM(y)+z(y)].

(2.6) Remark. We shall only consider cost structures such that h(y) is

finite for all y>0.

2.1 Infinite horizon.

For the infinite horizon case we want to find a T which minimizes B(T),

the total expected long run cost per unit time. Recall that

cF(T)+c0 F(T) + q(y)h(y) expf q(z)F-l(z)dF(z)IdF(y)
(2.7) B(Tr) T pyd

fo P (y) dy

We now assume that F is absolutely continuous with failure rate function r and

that the functions r, p and h are continuous. In this case we can differen-

tiate B with respect to T. Hence 0 P 0 if and only if

dT

S_________I
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(2.8) 0 - {[p(T)r(T)- p(y)(y) Fp (y)dyl[c -c-h(T)] co

0

+ [h(T)-h(y)]r(y)q(y)F (y)dy +h(T) [r(T) -r(y)]Fp(y)dy.

0 0 o

We can also rewrite the above as

rT
(2.9) 0 -{ [p(T)r(T)- p(y)r(y)]Fp(y)dy}c-c 01-

rT
+ 0 [h(T)r(T)q(T) -h(y)r(y)q(y)]F p(y)dy.

(2.10) Theorem. Let F have failure rate r and suppose that the functions r,p

and h are continuous. Then if either

(a) r,p.r and h are increasing with r unbounded and c0+ h(T)< c

for all T>0,
or

(b) (c -c 0)p(y)r(y) +h(y)r(y)q(y) increases to + =,

then there exists at least one finite positive To which minimizes the total

expected long run cost per unti time B(T). Furthermore if any of the func-

tions in (a) or (b) are strictly increasing, then To is unique.

Proof. If the conditions of the theorem are satisfied, then the right-hand

side of (2.8)(2.9)) is a continuous increasing function of T which is nega-

tive (-c0) at T-O and tends to + - as T+ +-. Hence there is at least one

value ->T0>0 which satisfies (2.8)((2.9)). Since B'(T) has the same sign

change pattern (-,0,+), it follows that B has a minimum at T0 . Under the

strict increasing assumption, B(T) is strictly increasing and so T0 is

unique.

(2.11) Remark. If cj(y) increases in j and y, then h(y) is increasing. If
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also cj is continuous and h(y) is finite for all y>O, then h(y) is continuous.

(2.12) Sp2ecial cases:

Case I (p-O). This case corresponds to the situation of minimal repairs with

no unplinned replacement. It is more general than the model considered by

Boland (1982) since the cost of minimal repairs cj(y) depends on the number

j as well as the age y. Now (2.7) reduces to

B(T) -T[co + JTh(y)F (y)dF(y)]
0

and (2.9) becomes

rT
co J (h(T)r(T) - h(y)r(y)]dy.

Thus a minimum exists if h(y)r(y) increases to + .

Case la (p-O, c W -c(t)). This was the case considered by Boland (1982). Here

h(y) - c(y). One special case where the condition in the theorem holds is when

c(t) is increasing to - and F is IFR.

Case lb (p-O, c (t) cj) Boland and Proschan (1982) investigated this case.
In particular they considered the cost structure c =a+jc.

Case 2 (p-l). This corresponds to no minimal repair (i.e., only complete

replacements) and reduces to the classical age replacement situation considered

by Barlow and Proschan (1965). Now (2.7) becomes

c F(T)+c 0F(T)

f TF(y)dy

and (2.9) reduces to

co 0 (c-c0) [r(T)-r(y)j](y)dy.
0 f

Hence if (c -c0 )r(y) increases to + -, we obtain a minimum. Barlow and Proschan

(1965) have the equivalent condition that c0 <c. and r(y) increases to -.

- - . 4
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Case 3 (p(t)-=p, O<p<l). In this case we are assuming that the probability

of a complete unplanned repair (and consequently minimal repair) does not

depend on age. Thus (2.7) is

B ~ -~(T) ] M + C0 FPP(T) +q Jh(y)Fq(y)dF(y)

B(T) TP(y)dy

and (2.9) becomes

Co= P(C.-cO 0 J[r(T)r~y)] (~d

+ q fE h(T)r(T) -h(y)r(y)3Pp(y)dy.

Therefore, if {p(c.;-c 0)r(y)+q h(y)r(y)) increases to + -, we again achieve a

minimum.

Case 4 (c,(t)=-c). Here the minimal repair costs depend on atither age nor

number and so h(y) =-c. Beichelt (1976) considered this case. Equation

(2.7) becomes

rT

B() cF(T) +c 0F p(T) +c Jo q(y) exp{ oqzV (z)dF(z)dF(y)

f TF (y) dy
(C.-c )F (T)+c F (T) + c TJF(y)Fl (u)dF(y)

o F p(y) dy

which is equation (6) of Beichelt. Equation (2.8) takes the form

CO (C,-c O-c) fo [p(T)r(T) -p(y)r(y)]i p (y)dy

+c Jo[r(T) - r(y)]ip(y)dy.
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Hence if {(c -c0-c)p(y)r(y)+c r(y)} increases to +co, then a minimum exists. A

special case-occurb whAn co+c <c and r and p are increasing with r unbounded.

2.2 Finite horizon.

In this section we consider the problem of finding the minimum cost over

a fixed time horizon [0,s). Since the general problem is quite involved,

.vd only consider the case p-O; i.e., no unplanned replacements. This ex-

tends the results of Boland and Proschan (1982).

For the case p-O, one can show using the techniques of BSS (1982)(as in the

Appendix) that the expected cost on [O,t] due to minimal repaiis only is given by

f h(y)Fl(y)dF(y),

where h(y) is as given in (2.4) or (2.5) with q-l; i.e.,

h(y) = I cj+l(Y) e
- R (y )

J = fO J  - J 1!

and R(y) a-log F(y) is the hazard function of F. Again we only consider

cost structures such thar h(y) <- for all Oyvs. We will assume without loss

of generality that the original cost of the system is zero.

(2.13) Theorem. The expected cost in [0,s) of our model with p=O is given by

(k-l)c0 + k fh(y)Fl(y)dF(y)if kT =s

K (T) T 0 s-kT

k co + k rh(y)-l(y)dF(y) + f0 h(y)F-I(y)dF(y) if kT<s<(k+l)T.

Furthermore K is continuous on [O,sJ except possibly at the points s,s/2,s/3,...s

and right-continuous at these points. Note that for T-s the cost on [O,s) does not

include the planned replacement cost.

Proof. From our original assumption that F is continuous, the function

Fh(y)Fl(y)dF(y) is continuous. The result follows easily from this.0!
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(2.14) Theorem. Let F have failure, rate r and suppose that the function r-h

is increasing and continuous on [O,s]. Then K s(T) is minimized on [O,s] at

one of the points s,s/2,s/3,...

Proof. For TE (s/k+l, s/k), we have

dK (T)

dT k[h(T) r(T) - h(s-kT)r(s-kT)].

dK (T)
Thus, by our assumptions, s is nonnegative and the conclusion follows.

dT

(2.15) Corollary. Let F be IFR with a continuous failure rate r on [0,s].

If the functions cj (u) are continuous and increasing in j and u for O<u<s,

then the results of Theorem 2.14 hold.

Proof. One can show that our assumptions on cj(u) imply that h(y) is in-

creasing and continuous in 0<_ <s. See Remark (.2.11).

3. Shock model

In Boland and Proschan (1983) a system which is subject to shocks is

considered. Under a simple cost structure the problem of optimum replace-

ments is considered. In this section we examine a similar system but with

general costs which depend on the number of shock and the time at which it

occurs.

We consider a system which is subjected to shocks at times S, ...

according to a nonhomogeneous Poisson process {N(t), t>O) having mean function

A(t). The cost of operating the system per unit time in [SjIS j ) is cj(u)

for u>0 and J-1,2 ..... The system is periodically replaced at times T,2T,...

at a fixed cost of cO and the shock process resets to zero at each of these

replacements.

.~I.
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If k shocks occur in [0,T), the cost of operating the system is given

by

k- 5 + T S AT
C(T) j 0 f d + j ud cj+ (u)du.

jO kS 0 iSAT 1+

Thus the expected cost is

w CO S JAT
K(T) =E(C(T)] -Z ZE[J AT c J~l u)du; N(T) -kJ

)1 X c.+luyirTS~(u)du; N(T)= k]
k-O 1-0 Jl

k 0 jO 1 JO cJ+2j(UE~ IS ATS lT) (u); N(T) =k]du.

For j- 0,1,...,k-1 and O<u<T,

E[I IS ATS lT) (u);N(T)-k Q PIS 1 < u < S J+ 1 N(T) -k]

- P [N(u) - J;N(T)-N(u) - k-i]

and for i 'k, 0<U<T,

E[IS ATS lT) (u);N(T)- k] - PIS k-u <T <S k+lJ

- PINNu) - kN(T) - N(u) =0].

Thus

~ T
K(T) = k 0j0fcj~l (u) P[N(u)- JIP[N(T)-N(u) ink-jldu

- ~ u P[N'') -J] IP[N(T)-N(u)n uk-jldu
joi k-j

- H1(T)
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fT
where h(u) j .10 cj+l(u) P[N(u) - J 1 E[cN(u)+l(u)] and H(T) h(u)du.

3.1 Infinite horizon.

We consider the process on [O,s). Again we may assume without loss of

generality that the cost of the original system is zero. Then the expected

cost on [O,s] is given by

m[H(T)+c0] + H(s-mT) if mT<s<(m+l)T

m H(T)+(m-l)c 0  if mT-s.

Thus the long run expected cost per unit time is

K (T) Ht (T)+c 0

(3.2) B(T) = lira -s(- =
s T '

which is the average cost over (0,T]. So to minimize the long run average

cost we want to minimize B(T). Assuming that h(u) is continuous, the condi-

tion - = 0 is equivalent to the well known condition

dT

(3.3) f[h(T) -h(u)]du= co.

The following result is now easy to derive.

(3.4) Theorem. If there exists an inverval 10,b), O<b<.-, on which h(u) is

continuous, increasing and unbounded, then there exists a solution 0<T 6

to equation (3.3). Furthermore, if h(u) is strictly increasing, then the solu-

tion is unique.

(3.5) Remark. As before if cj(u) increases in j and u, then h(u) is increas-

ing. If also each cj(u) is continuous, A(u) is continuous, and h(u)is

finite for u>0, then h(u) is continuous.
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3.2 Finite horizon.

As noted before, the expected cost on [O,s) is given by

[ m[H(T)+c 0]+H(s-mT) if mT<s<(m+l)T

mH(T)+(m-l)c
0  if mT - s.

We now want to minimize Ks (T) for fixed s. The proofs of the following re-

sults are similar to those in section 2.2.

(3.7) Theorem. The expected cost K s(T) on [O,s) is given by (3.6). If H(u)

is continuous on [O,s], then K is continuous on [O,s] except possibly at the

points s,s/2,s/3,... and right-continuous at these points.

(3.8) Theorem. Assume that h(u) is continuous and increasing on [O,s]. Then

K s(T) is minimized on [O,sJ at one of the points s,s/2,s/3,....

(3.9) Note. The Remark (3.5) is also pertinent here.
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Appendix

In this section we present the detailed calculations of the expression

given by (2.3). We closely follow the techniques and notation of BBS (1982).

As in BBS (1982) we let f(SMl),Z(l)); n>l} be a sequence of randomn n

variables, where S(1) >0 denotes the time of the nth repair and Z(I ) = 0 or I
n - n

indicates a minimal or a complete repair at time S I  (S0 ) 0, zil)=- 0),n-1

respectively. We consider the process only up to the first complete repair

at time Y= S(1) where v = inf{n: Z(l l = 1). Then from Theorem A.4 of BBS (1982)
V-1 n

the {S(1) are the jump times of a nonhomogeneous Poisson process with mean
n n-1

function F-(y)dF(y). Furthermore if p is such that J p(y)P (y)dP(y)=

then by Theorem A.5 of BBS (1982) Y1 has distribution F (y.) given by (2.1).

Since

E[R*] =E[RI; Y < T ] +EIRI; YI>T)

it suffices to compute each term separately. First, since YI S(l) if and
1 n

onlyif Z(i) "''=Z(1)= 0 and n(1)w=1, we have

n n+l

=cF pT) + E[c,(S ;Z , Z n < S <

n2 J=l ("

=c F pT)+[ IS z 1 n S I: nI<TJ

J-1i n=j+l i=2 - n

where the last equality follows from (A.3) of BBS 1982). We now consider one of

the summands for n j+l. Again using (A,3) of BBS (1982)
(1) (1 n (1) nTE~c (S 1))p(Sn )) 11 q"-i-l') n<'

i=2

f Fl(s)q (s_)fT P (s2 )q(s 2 )... fT FCsj)sq ( sj) c T Csj+l)q(s j+!.

0 j- 2 sj

* F- r(n)qT nl P(Sn)dF(Sn) ...dF(sI)

..n-2 .n-i
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fpsfs F(s)q (s,_) ... fi1F(s )q Cs )c (s ){t q s -).

(2 (sI--1 I)?( ...dF(s j1)jdF(s ) ... dF(s n

= ~p (sn)jfs F-n 1pq (sn1) ...fji+l F l(s.)q(s i)c~ i s

(j1) Efj Fku)q~u)dE(u)]i 1 }dF(sj) ... dF (sn)

_ J~p~s f~ -~jq( c( [jfS'--u)q(u)dF(u)j1l

j n-2

ThuT

n-j+1 q i <T
- o~nfnT -jq(jc Si- -1 (I -' (u)F(.u)d]J-l

0 0

1 e ( f~ n Fv1qCv)dF v) dF C~F

IE[ 1; 1 ) F(1) +JPC ).~ F1 v)qvdv

i-

E y1TI c ,,F (T) + p)exp{ 0 Cv)q~v)dF(v)}zqzhzdzdFw

where
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c()exp{- IFCuv)~F~) ,L fJF~ (v) dF(.v) j

1+1c (. u u) u I [z
J.0 J' O J JO

Similar calculations for the term E[R,; Y I> Tij are given below.

-O n- 1l (1) (1) (1),
E[c F*Yl T+ - Ecc1(5 (T OEc( ;S<T<S 9 ,

Op n n -2 J- 1  =... -1 n-

C0Fp (T) n + I E[c (S 1 ) 
1  n n- - n

For n>J+1,

= (T) (82 (1) 2 (1 (
1 ()q(S Cj(j

E * (S F( 1 ( -)q Sn1 <). 1:2 F1S )qs)d(). nd(S

)f a T

F ( )q (JqF (si) q~s).)c.f(+1 E 1 s 1 )q(s)c 1 (8 1

s (s rfI F)q(u )dF (an)]
1 dF (a ... dF(s)

n-2n-



- (T) fl(s)q(s )c (Sj) SjJ) Pf-1 (u) q(u) dF (u)]J- I

Consequently,

E[R 1;Yl LTI - c0F p(T)+,F(T) exp 0JP (v)q(v)dF(v)If0l(z)q(z)h(z)dF(z),

and so

E[R 1 - c. F (T)+ c P (T)

+ J Tp(w) exp T-fP' (v) q(v) dF (v)TOF-1 (z)q (z)h(z)dF(z)dF(w)
o 0

+ F(T) exp (F (v)q(v)dF(v)}JTF-1 z)(z)h(z)dF(z).

But since expf P1 (v)q(v)dFCv)}- FlCv) exp{- f l.fy)p(y) dF(y), we obtain

f p(W)explJTO (v) q(v) dF (v) IfT'F'(z) q(z)h(z)dF(z)

Y- J ~ (z)q(z)h(z)p(w) expfPF'(-) q(v) dF (v)dF (w)dF(.z)

r* J (z) q(z) h(z) T Vp ()-xp( {- TO (y) p(y)d () dF (udF(z)

f TJF'(z)q(z)h(z) (exp{- JP1y) p(y)dF() I - exp f - J P-l(y) p(y)dF (y)dF (z)

SF1 (z)q(z)h(z)expf- J (y)p 6i)IF y) IdU z)

0 0

- (.T)exp{J fPCy)qCy)dF(y)Jf' (z)q(z)h(.z)dF(z).
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Thus

E(R cF (T) +C c p(T) +JF'z)q z)hCz) 2x{ y y F()d Z

C0F~ P(T) + c 0F (T) + 0 q(z)h(z) exp{J 0F (y)q(y)dF(Y)}dF(Z).



i7

REFERENCES

(1] Asher, H. and Feingold, H. (1979). Comments on "Models for reliability
of repaired equipment". IEEE Trans. on Reliability R-19.2, 119.

[2] Barlow, R.E. and Hunter, L.C. (1960). Optimum preventive maintenance
policies. Operations Res. 8, 90-100.

[3] Barlow, R.E. and Proschan, F. (1965). Mathematical Theory of Reliability.
John Wiley and Sons, New York.

[4] Beichelt, F. (1976). A general preventive maintenance policy. Math.
Operationsforsch. u. Statist. 7, 927-932.

[5] Block, H.W., Borges, W.S. and Savits, T.H. (1982). Age-dependent minimal
repair. University of Pittsburgh Technical Report No. 82-05.

[6] Boland, P.J. (1982). Periodic replacement when minimal repair costs
vary with time. Unpublished report.

[7] Boland, P.J. and Proschan, F. (1983). Optimum replacement of a system
subject to shocks. Operations Res. 31, 697-704.

[8] Boland, P.J. and Proschan, F. (1982). Periodic replacement with increas-
ing minimal repair costs at failure. Operations Res. 30, 1183-1189.

[9] Ross, S.M. (1970). Applied Probability Models with Optimazation Applica-
tions. Holden-Day, San Francisco.

J4



UCSSIFIED
SECURITY CLASSIFICATION OF ToIS PAGE (WIen Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPpRT NUMBER 2, GOVT ACCESSION NO. 3. RECIPIENTrS CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT # PERIOD COVERED

A General Minimal Repair Maintenance Model Technical - August 1983

6. PERFORMING ORG. REPORT NUMBER

I AuTHOR(s) S. CONTRACT OR GRANT NUMBER(*)

Henry W. Block, Wagner S. Borges and
Thomas H. Savits N00014-76-C-0839

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA I WoRE uNIT NUMBERS

Department of Mathematics and 
Statistics

University of Pittsburgh
Pittsburgh, PA 15260
,,. CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT OATE

Office of Naval Research August 1983
Department of Navy 13. NUMBER OF PAGES

Arlington, VA 22219 16
14. MONITORING AGENCY NAME & AOORESS(I'dIllotont from Controlling Office) 15. SECURITY CLASS. (of this eoport)

UNCLASS IFIED

'IS. OECL ASSIFICATION/ DOWNGRADING
SCHE[DULE

16. DISTRIBuTION STATEMENT (of this Report)

Approved for public release; distribution iunlimited.

17. OISTRIBUTION STATEMENT (ol tho absttac onterod In Block 20, iI Elifegent from Report)

18. SUPPLEMENTARY NOTES

IS. K(EY WORDS (Continue on revers e fde If neceaary and identily by block number)

Maintenance policies, minimal repair, renewal reward, finite and infinite
horizon, shock models

20 ABSTRACT (Continue on reverae aide If necesery end Identify by block number)

A general model is introduced which incorporates minimal repair, planned and
unplanned replacements, and costs which depend on time. Finite and infinite
horizon results are obtained. Various special cases are considered. Further-
more a shock model with general cost structure is considered.

DD , 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF TIS PAGE ,Who. Data Enteoe.j;


